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Abstract
Glial cells have been identified more than 100 years ago, and are known to play a key role in the central nervous system 
(CNS) function. A recent piece of evidence is emerging showing that in addition to the capacity of CNS modulation and 
homeostasis, glial cells are also being looked like as a promising cell source not only to study CNS pathologies initiation 
and progression but also to the establishment and development of new therapeutic strategies. Thus, in the present review, 
we will discuss the current evidence regarding glial cells’ contribution to neurodegenerative diseases as Parkinson’s disease, 
providing cellular, molecular, functional, and behavioral data supporting its active role in disease initiation, progression, and 
treatment. As so, considering their functional relevance, glial cells may be important to the understanding of the underlying 
mechanisms regarding neuronal-glial networks in neurodegeneration/regeneration processes, which may open new research 
opportunities for their future use as a target or treatment in human clinical trials.
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Introduction

Parkinson’s disease (PD) is the second most common neu-
rodegenerative disease affecting around 10 million people 
worldwide [1]. Clinically, PD is diagnosed based on the 
identification of cardinal features that affects the motor 
system, namely, bradykinesia (slowness in the execution of 
voluntary movements), postural instability (a tendency to 
fall even in the absence of weakness or cerebellar balance 
disturbance), muscular rigidity (stiffness), and tremor at rest, 
with an asymmetric onset, which becomes bilateral along 
time [2–4]. These motor deficits are the result of progres-
sive degeneration of dopaminergic neurons (DA neurons) in 
the nigrostriatal pathway at the level of the substantia nigra 

pars compacta (SNpc) and striatum [3, 5, 6]. Although less 
explored than motor symptomatology, several studies have 
been suggesting a critical role for PD non-motor symptoms 
(NMS) in preceding the appearance of clinical PD motor 
symptoms [7–9]. Concerning the treatment pipeline for PD, 
there was not a significant change over the last years, and the 
use of levodopa stills the gold standard treatment, since its 
introduction in the early 1960s [10]. However, it is important 
to highlight that levodopa is just efficient during the first 
years of the disease, as its chronic administration is associ-
ated with the appearance of undesirable side effects, such 
as dyskinesia, addictive and compulsive behaviors [11–13]. 
As a therapeutic alternative, dopamine (DA) agonists 
(e.g., ropinirole, pramipexole, and piribedil) and enzyme 
inhibitors (e.g., entacapone and selegiline) have been used, 
although without success in late stages of the disease, in 
the modulating or delaying PD progression [12, 14]. Safi-
namide, a recent monoamine oxidase B (MAO-B) inhibitor 
compound, has been claimed as a promising option for PD 
treatment [15, 16], due to its multimodal dopaminergic (able 
to increase dopamine levels and prolong levodopa action) 
and non-dopaminergic (neuroprotective—able to modulate 
glutamate release through calcium/sodium channels inhibi-
tion, and microglia activation) effects [17]. In addition to 
these pharmacological treatments, surgical interventions, as 
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deep brain stimulation (DBS) in the globus pallidus inter-
nus (GPi), subthalamic nucleus (STN) and pedunculopontine 
nucleus (PPN) have been applied as an alternative in patients 
with significant motor complications [18]. Although prom-
ising results have been obtained, like in pharmacological 
approaches, DBS also presents undesirable effects. It was 
related that STN DBS caused cognitive and psychiatric side 
effects (e.g., depression, apathy, and impulsivity) [19–21]. 
In addition to this, it is important to assume that not all PD 
patients are eligible for DBS, existing specific parameters, 
and conditions to be considered for this surgical procedure 
[22–24]. Being so, although improvements in patient’s qual-
ity of life were achieved with the above-referred treatments, 
they do not stop or delay disease progression, which in con-
sequence leads to the increase of drug dosages or constant 
stimulation frequency adjustments. Therefore, strategies that 
may overcome the limitations of drug and surgical proce-
dures should be considered and developed. Currently, the 
use of stem cell-based strategies has been pointed out as a 
new approach to treat PD patients. The use of embryonic 
stem cells (ESCs) [25], neural stem cells (NSCs) [26], mes-
enchymal stem cells (MSCs) [27] and induced pluripotent 
stem cells (iPSCs) [28] have been investigated and used as a 
potential therapeutic option to tackle PD [29–31].

More recently, pieces of evidence have been suggesting 
that glial cells can also be a promising cell source for the 
establishment of therapeutical strategies for neurodegenera-
tive disorders, including PD [32–35]. However, it remains 
unclear if glial cells are key players in the development of 
PD or if they are a potential solution for treatment. Indeed, 
a dual role has been pointed out, assuming that glial cells 
can shift from neuroprotective- to neurodegenerative-like 
profile during PD development and progression, although 
such assumption remains to be proved [36–38]. Thus, on 
the scope of the present review, we intend to address the 
current understanding of glial cells either as a promoter of 
PD development/progression, either as a therapeutic target/
agent for its treatment.

Glial cells

Apart from neurons, CNS is also composed of glial cells, 
and, for a long time, the function of these cells was not well 
understood. Actually, for several years, glial cells were only 
viewed as a “glue” for neurons, being important players in 
the maintenance of its viability and (trophic) support. Char-
acteristically, glial cells are divided into three major cell 
groups namely, microglia, oligodendrocytes, and astrocytes, 
whose function and role in CNS will be further explored. 
There has been an increasing interest in understanding the 
role of these cells in the CNS both in normal and pathologi-
cal conditions, since glial cells have been suggested criti-
cal in neuronal development [39–41]. Indeed, studies have 

shown that astrocytes and microglia are important promoters 
of axonal outgrowth, dendritic extension as well as modula-
tors of the morphological plasticity of neuronal receptive 
endings [42–44]. Additionally, these cells have also a unique 
way to communicate with each other, namely through intra-
cellular waves of calcium  (Ca2+) and through the intercel-
lular diffusion of specific gliotransmitters, such as glutamate 
and ATP [45–47]. Nevertheless, it is important to highlight 
that gliotransmitters release (e.g., gliotransmission) is still a 
matter of debate. Some studies showed that this phenomenon 
requires very specific, temporal and spatial conditions for 
transmission, thereby suggesting that gliotransmission may 
not occur under (all) physiological conditions (as remarkably 
reviewed in [48, 49]).

In contrast to neurons, glial cells are non-excitable cells, 
but they are also able to respond to various stimuli, like 
 Ca2+ oscillations [50–53]. Under the context of CNS neuro-
degenerative disorders, particularly in PD, glial cells have 
been claimed as key players in the disease development, 
being associated with the occurrence of neuroinflammation 
and (neuronal) degenerative processes and environments 
[54–56]. Yet, glial activation has been considered as a sec-
ondary phenomenon caused by the neuronal degeneration 
itself, rather than as a direct contributor to the pathophysi-
ological mechanisms underlying the disease.

Regarding microglial cells, they are considered the resi-
dent innate immune cells or “gate-keepers” of the healthy 
brain. As immune cells, microglia is capable of robust 
chemotaxis, phagocytosis, and cytokine production [57–59]. 
These cells are extremely adaptable and undergo a variety 
of structural changes based on the location and surrounding 
environment. Under physiological conditions, they exhibit 
a small soma with long and thin ramified processes, while 
in pathological conditions, the shape of these cells changes 
adopting a less ramified morphology with fewer and thicker 
processes that allow them to easily adapt and react to a novel 
condition [60, 61]. Actually, over the last years efforts have 
been done around microglial activation and characteriza-
tion, as studies have indicated that its presence in the CNS 
is heterogeneous [62–65]. In fact, under this concept of 
heterogeneity, microglia has been under intense debate, as 
studies suggest that they can be phenotypically categorized, 
namely into M1 and M2 microglial cells [66, 67]. While M1 
(pro-inflammatory) microglia appears to respond to injury 
and infection, acting as the first line of defense of the tissue, 
M2 (anti-inflammatory) microglia are being described as the 
major effector with the potential to decrease the pro-inflam-
matory response and to promote inflammatory attenuation 
and repair through the expression of anti-inflammatory mol-
ecules [66, 68]. However, microglia M1/M2 conformation 
has been debated [69]. Transcriptomic studies showed that 
microglia have increased diversity and do not follow spe-
cifically an M1 or M2 phenotype, either during homeostatic 
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or activated conditions [69]. Actually, M1 and M2 markers 
are present during microglia neurodevelopment and through 
adulthood, thereby indicating that M1 or M2 is not specific 
to resting or activated phenotypes [69–71].

One of the most well-described roles of microglia is 
their phagocytic capability. In fact, upon an adverse stimu-
lus in the CNS, microglia are well poised to induce pro-
grammed cell death and clean-up accumulating cellular 
debris [72–74]. The phagocytic activity of microglia relies 
on a specific receptor expressed on the cell surface and in its 
downstream signaling pathways. However, in the last years, 
new insights on microglia roles have been emerging, show-
ing that microglia goes beyond as simple “brain immune 
cells”. Indeed, neuronal survival and synaptic network 
development are also other examples in which microglial 
cells play a role, contributing to a homeostatic function of 
the CNS. In accordance, studies indicated that during CNS 
development microglial cells disclose a paracrine activity 
able to support neuronal differentiation and maturation. For 
instance, Nayak et al. [72] and Ueno et al. [75] described that 
insulin-like growth factor-1 (IGF-1) released by surround-
ing microglia was crucial for the survival of layer V cortical 
neurons during postnatal development [72, 75]. Such obser-
vations were further confirmed by showing that inhibiting 
or depleting microglial activity led to cell death of layer 
V cortical neurons, thereby indicating that microglia have 
a supportive role in neuronal survival and differentiation 
[75, 76]. Other (neuro)trophic factors, such as basic fibro-
blast growth factor (FGF), nerve growth factor (NGF) and 
brain-derived neurotrophic factor (BDNF) were also found 
to be released by microglia and are involved in neuronal 
development and maintenance. Through conditional gene 
inactivation, Parkhurst et al.  [77] showed that microglial-
secreted BDNF is involved in the regulation of learning-
induced synapse formation. This interplay is mainly due to 
the microglial-secreted BDNF action on neuronal tropomy-
osin-related kinase receptor B (TrkB) and in the glutamater-
gic synaptic transmission modulation and plasticity [77]. In 
line with this, microglia were also found as being involved 
in synaptic pruning and maturation, required for the proper 
maturation of excitatory synapses transmission. In the pre-
natal mouse brain, microglia regulate the wiring of fore-
brain circuits, controlling the outgrowth of dopaminergic 
axons into the forebrain [78, 79]. It is well established that 
microglia migrate to the site of damage and participate in the 
phagocytic removal of cellular debris [40]. Moreover, it was 
recently indicated that microglial cells are also highly motile 
in an injured brain, continuously extending and retracting 
functional processes through the extracellular space. Being 
so, it is possible to hypothesize that microglial cells might 
be involved in the monitoring of synaptic maturation and 
functioning [40, 80, 81]. For instance, mice lacking Cx3cr1, 
a chemokine receptor expressed by microglia in the brain, 

have lower microglia cell numbers in the developing brain, 
a fact that was correlated with a synaptic pruning delaying.

Concerning oligodendrocytes, these are highly special-
ized cells whose main functions are to myelinate CNS axons, 
providing axonal metabolic support, and contributing to 
neuroplasticity [32, 82, 83]. Myelination is critical for the 
normal functioning of neurons, since it is the process that 
allows fast and efficient transduction of electrical signals 
in the nervous system [84]. However, due to the complex 
architecture and high metabolic demands of these cells, the 
functionality of them can be easily disturbed. As a conse-
quence of their high metabolic demanding, oligodendro-
cytes are extremely vulnerable to oxidative stress [85, 86], 
being for that usually referred to as “the most vulnerable 
cells of CNS”. Additionally, over the years it was thought 
that under inflammatory conditions oligodendrocytes do not 
react; however, recent pieces of evidence have shown the 
opposite [85, 87], demonstrating that oligodendrocytes can 
produce immune mediators, such as interleukin (IL)-8 [88], 
an important cytokine involved in the microglia recruitment 
[89]. Oligodendrocytes exhibit BDNF mRNA expression 
and some studies addressing the BDNF expression change 
in disease/injury conditions. In a model of spinal cord injury, 
it was found that BDNF expression was upregulated in oli-
godendrocytes [90].

By last, astrocytes, are the most present class of glial 
cells in the mammalian CNS, being very heterogeneous at 
the functional level. Besides structural support provided to 
neurons [91, 92], astrocytes are also responsible for meta-
bolic support and energy regulation through their capacity to 
secrete neurotrophic factors [93, 94], maintain blood–brain 
barrier (BBB) integrity [95] and modulate synaptic trans-
mission and neuronal excitability [96, 97]. In addition to all 
these functions (in adulthood state), it is also well described 
that astrocytes play an important role in synapse formation 
and maturation during the embryonic development. For 
instance, studies have described that residents and fully dif-
ferentiated astrocytes in the hippocampus also participate in 
processes of synaptogenesis [98]. Indeed, like for microglia, 
it is already known that astrocytes secrete molecules that 
are important for synaptogenesis, such as d-serine, ATP, 
BDNF, and glypicans [99–102]. Still, Krzisch et al. [103] 
found that afferent and efferent synapses of newborn neu-
rons are ensheathed by astrocytic processes, independently 
of the neuronal age or the size of their synapses. Moreover, 
astrocytes are also important key players in neurogenesis 
in the hippocampus [104, 105] and an active role has been 
pointing out in the formation and integration of adult-born 
granule neurons through the release of specific growth and 
neurotrophic factors [104, 106, 107]. Still, astrocytes were 
also found to be involved in neuronal differentiation (namely 
into DA neurons) and maturation, due to their trophic ability 
of synthesis and release of growth factors, such as the basic 
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fibroblast growth factor (bFGF), a relevant neurotrophic fac-
tor in embryonic development and neuronal lineage specifi-
cations, for instance, on ESCs.

Unlike neurons, astrocytes do not propagate action poten-
tials, but they can sense neuronal inputs through ion chan-
nels, neurotransmitter receptors, and transporters [93, 94], 
thereby modulating a response through a  Ca2+ signaling 
mechanism [108, 109], which regulates the metabolic and 
trophic support of neurons. Still, the expression of several 
functional neurotransmitter receptors, such as glutamate or 
gamma-Aminobutyric acid (GABA) has been correlated 
with the generation of a  Ca2+ flux that propagates within 
astrocytic populations [93, 94]. Consequently, the gener-
ated  Ca2+ flux is responsible for the regulation of specific 
gliotransmitters secretion [110–112]. Astrocytes release dif-
ferent gliotransmitters, such as glutamate, GABA, ATP, and 
D-serine that lead to the activation of axonal receptors [113]. 
However, yet remain the challenge to demonstrate if a single 
astrocyte can release different gliotransmitters or if differ-
ent astrocytic subpopulations release distinct gliotransmit-
ters [114], although a recent study showed that hippocampal 
astrocytes release both glutamate and ATP [114].

Glial cells in Parkinson’s disease

As previously mentioned, PD is the result of progressive 
degeneration of DA neurons in the nigrostriatal pathway 
[3, 5], which in consequence leads to striatal malfunction-
ing due to a drastic reduction of DA production and release 
within the striatum [3]. Nevertheless, although it has been 
suggested that norepinephrine and serotonin are also low in 
PD patients, DA is the most drastically reduced [115], being 
this loss considered the (main) responsible mechanism for 
the appearance of the majority of PD motor signs. Still, it has 
also been documented that PD motor symptoms are caused 
by increased inhibitory output from the basal nuclei to the 
thalamus and the prefrontal motor cortex. The motor system 
involves a wide range of neuronal structures in the midbrain 
and forebrain, being DA the pivotal neurotransmitter in the 
modulation of basal ganglia neurons. Another PD hallmark 
is the formation of Lewy bodies (LBs), used as a post-mor-
tem disease state confirmation. From a broad range of pro-
teins within its constitution, LBs are mainly composed by 
α-synuclein (α-syn) [116, 117], and although well-defined 
and characterized, the mechanisms engaged in the formation 
of LBs and why they play a role in PD pathogenesis remains 
still unclear [118]. According to the literature, it is known 
that DA neurons degeneration begins in the axonal and syn-
aptic terminals that retrogradely progresses to the cells’ bod-
ies of the SNpc. Notwithstanding, the starting point of DA 
neuronal degeneration is still poorly understood. A major 
question that remains to be answered is, at the cellular level, 
how PD is triggered? The development of intracellular LBs 

inclusions is one of the most well-characterized features of 
PD [4]. Moreover, mutations or overexpression of such pro-
teins has also been associated with the formation of toxic 
oligomers/insoluble aggregates, which in turn were corre-
lated with alterations in cellular trafficking, disruption of 
cell morphology, and impairments in mitochondrial func-
tion (Fig. 1) [119, 120]. Nevertheless, accumulating pieces 
of evidence have also been indicating that in addition to 
abnormal protein accumulation, mitochondrial dysfunction, 
disruption of protein clearance pathways, excitotoxicity, neu-
roinflammation, and oxidative stress is also a key player in 
PD initiation and progression (Fig. 1) [121–124]. In addi-
tion to this, nowadays increasing evidence is suggesting the 
contribution of glial cells in the demise and/or protection of 
DA neurons (Fig. 1). For instance, activated astrocytes and 
microglia were found to be either neuroprotector of DA neu-
rons by the secretion of neurotrophic factors (such as GDNF 
and BDNF), either promoter of neurodegeneration by the 
release of pro-inflammatory molecules, such as IL-1β and 
TNF-α [35, 125]. Therefore, understanding this ‘dual’ role 
of glial cells could be of great importance in the establish-
ment of new concepts and insights for the treatment of PD.

Glial cells: are they beneficial for PD?

Trophic support and release of bioactive molecules are some 
of the most well-known mechanisms of glial cells in nor-
mal and pathological conditions. Factors as GDNF, bFGF, 
BDNF, and NGF have been found in the glial secretory pro-
file, which are important modulators in the development and 
survival of DA neurons [126, 127]. Datta et al. [128] have 
recently described that by stimulating astrocytes with nitric 
oxide (NO) leads to remarkable segregation of BDNF, which 
was found to have a protective effect against a 6-OHDA 
insult, thereby promoting DA neurons survival [128]. With 
engineered astrocytes, Safi et al. demonstrated that GDNF-
enriched CM was able to promote DA neuronal survival 
in vitro [129]. Similarly, Renko et al. [130] by injecting 
unilaterally GDNF in the striatum of a PD rat model, found 
that, although GDNF did not affect the extracellular level 
of DA, it significantly elevated tyrosine hydroxylase (TH) 
and catechol-O-methyltransferase (COMT) activity [130]. 
In contrast, with mesencephalic astrocyte-derived neuro-
trophic factor (MANF) they have observed a positive cor-
relation with DA levels, which were found to be increased 
within the striatum [130]. Using an adeno-associated virus 
serotype 9 (AAV9) containing the vector-mediated gene of 
human MANF (hMANF), Hao et al. [131] demonstrated 
long term neuroprotection effect on DA neurons, a fact that 
was correlated with an improvement on rotational asymme-
try on parkinsonian rats. Still, the same authors also showed 
that intracellular MANF protects DA cells via inhibiting 
6-OHDA-induced endoplasmic reticulum (ER) stress, while 
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extracellularly was found to modulate PI3K/Akt/mTOR 
pathway activation [131].

Similarly, Zhang et al. showed that after 6-OHDA expo-
sure, MANF factor protected SH-SY5Y cells through the 
modulation of autophagy [132]. Concerning mitochondrial 
damage, MANF was also found as a key player through the 
attenuation of reactive oxidative species (ROS)-induced 
damage, thereby increasing mitochondrial functionality 
[132]. Moreover, Miyazaki et al. [133] have shown that 
using Levetiracetam (an anti-epileptic drug that increases 
xCT (a cystine-glutamate antiporter) expression, and also 
increases glutathione (GSH) production in/from astrocytes) 
that there was a protection of DA neurons against 6-OHDA-
induced neurotoxicity, correlating such observation with an 
increase of astrocytic-derived GSH, thereby suggesting that 
xCT astrocytes could be a potential target to prevent DA 
neuronal degeneration [133]. In addition, and taking advan-
tage of an α-synuclein Caenorhabditis elegans (C. elegans) 
model, Zhang et al. demonstrated that MANF rescues DA 
neural degeneration and locomotion defects during PD pro-
gression, through its capacity to decrease the aggregation of 
α-synuclein, and restore DA levels and functionality [134].

Similarly to astrocytes, it was already shown that upon 
activation, microglia enhances neuronal survival by the 
release of trophic and anti-inflammatory factors such as 

GDNF [135–138]. Furthermore, resembling astrocytes, 
microglial cell is also involved in the upregulation of tissue 
repair and regeneration genes [136, 139]. In contrast, under 
reactive and inflammatory environments, microglia have 
been described as promoters of PD neurodegeneration in 
the nigrostriatal pathway. The secretion of pro-inflammatory 
cytokines, such as tumor necrosis factor-α (TNF-α), IL-1β 
and IL-6, and multiple chemokines, as well as, ROS-like 
superoxide and NO, is the major booster of DA neuronal 
degeneration [136, 140, 141]. Therefore, and due to its 
importance in mediating neuroinflammation during disease 
progression, several studies have been suggesting that target-
ing/modulating microglia activation state may be a new and 
opportune strategy to target PD. Such modulation can be 
done through the suppression of deleterious pro-inflamma-
tory neurotoxicity and/or by simultaneously enhance their 
beneficial anti-inflammatory protective functions [142, 143]. 
Notably, studies have shown that targeting pro-inflammatory 
cytokines, such as TNF-α, IL-1β, and interferon-gamma 
(IFN-γ), by decreasing its ability to interact with microglia 
receptors may be one of the ways to achieve neuronal protec-
tion [143, 144]. For instance, significant positive gains were 
observed only with a single injection of a lentivirus-express-
ing dominant-negative TNF (DN-TNF) into the SNpc of a 
striatal 6-OHDA lesion. Lesioned rats have shown not only 

Fig. 1  Mechanisms involved in the degeneration of Parkinson’s dis-
ease. DA cell death may be caused by oxidative stress, mitochondrial 
dysfunction, and α-synuclein aggregates. However, there is some 
controversy about how these mechanisms can be activated. Risk fac-
tors like genetics, age-related, and surrounding environment are well 
accepted. Still, the influence of glial cells in these processes is poorly 

understood and it is still unclear whether these cells are key players in 
the disease protection or progression. ROS production occurs through 
the auto-oxidation process of DA, resulting in significant amounts of 
 H2O2 that can further interact with metal ions like iron, leading to 
DAn generation
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amelioration on their behavioral anomalies but also attenu-
ation on the DA loss. These observations were correlated 
with TNF suppression of microglial M1-associated toxic-
ity, indicating that TNF plays a role in microglial activation 
and DA degeneration [143, 144]. Parallel et al. showed that 
Pioglitazone (a PPARγ agonist) can also be an interesting 
compound to modulate microglial phenotype, demonstrating 
that microglia can be converted from a pro-inflammatory 
M1 state to an anti-inflammatory M2 state after exposure, 
although this concept remains still under discussion [145]. 
Thus, while promising, the role of microglia in PD remains 
elusive. Therefore, future studies should be performed to 
address it as a potential therapeutic target to modify/delay 
PD progression, which may open new insights for transla-
tional clinical studies.

Glial Cells and PD: do they have detrimental effects?

Neuroinflammation

PD is characterized by its neuroinflammatory profile, where 
both astrocytes and microglia are pivotal players. How-
ever, it is important to highlight that remains unclear if this 
inflammatory response could be or not the cause or one of 
the leading causes of DA degeneration and consequently of 
PD initiation and progression.

Under inflammatory cues, microglia become activated 
(Fig. 2) and display conspicuous functional plasticity, ulti-
mately transforming into a macrophage-like phenotype. 
These alterations include morphological changes, prolif-
eration, increased expression of cell surface receptors, and 
the production of neurotoxic factors such as ROS and pro-
inflammatory mediators such as TNF-α (Fig. 2) [33, 146]. 
In parallel, the immune-competent astrocytes are also able 
to detect danger signals in their surrounding environment, 

and, therefore, trigger an immune response through the 
secretion of important cytokines and chemokines. Moreo-
ver, these cells are also important mediators in immune cell 
trafficking control and activation [55, 147, 148]. Neverthe-
less, it is believed that an imbalance in the secretion of pro-
inflammatory/anti-inflammatory substances contributes to 
chronic neuroinflammation and neurodegeneration (Fig. 2) 
[66, 149, 150]. Being so, and considering that in PD there is 
a progressive loss of DA neuromelanin (NM), Zhang et al. 
conducted a study to evaluate the impact of extracellular NM 
on microglial activation. From such a study they found that 
extracellular NM in the absence of microglia is not toxic to 
neurons, whereas in the presence of them, NM released by 
neurons can induce neurotoxicity [151].

Although inflammation is an indispensable mechanism 
of defence, it often damages the surrounding tissues. So, 
tight control of the inflammation extent, maximizing the 
antipathogenic effect while minimizing tissue damage is of 
extreme importance. Astrocytes might play an important 
role in this regulation by modulating microglial activity, the 
major responsibility for the PD inflammatory response. For 
instance, astrocyte-derived plasminogen activator inhibitor 
type-1 (PAI-1) is being described as a regulator of micro-
glial migration and phagocytic activity, thereby preventing 
apoptosis [152, 153]. On the other hand, evidence indicates 
that microglia release pro-inflammatory molecules that con-
sequently activate astrocytes [55, 152]. In most cases, these, 
in turn, lose their normal function and gain a new toxic func-
tion that rapidly kills neurons and mature oligodendrocytes 
[55]. Therefore, in an attempt to modulate and block these 
deleterious effect different studies have been conducted. 
For instance, Sun et al. modulated the protein expression of 
aquaporin-4 (AQP4), a water membrane transport protein 
upregulated in PD astrocytes [154, 155]. Using an MPTP PD 
mice model, these authors demonstrated that knocking down 

Fig. 2  Glial cells in healthy and brain disease. Under the different 
environmental stimuli, astrocytes and microglia can change its activ-
ity/function. In the resting state, it is thought that microglia and astro-
cytes exhibit a characteristic phenotype, M2 and A2 (respectively) 

which is related to phenomes linked with neuroprotection. Though, 
under pro-inflammatory environmental this state alters shifting to an 
activated status: M1 and A1. Being this status associated with neuro-
degeneration
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(KO) this protein leads to an increase in NF-kB activity. 
This increase was followed by an augment in the release of 
IL-1β and TNF-α by astrocytes and activation of microglia, 
thereby demonstrating the role of AQP4 in neuroinflam-
mation [155]. Another interesting issue that remains under 
scientific discussion, is the impact of astrogliosis on brain 
molecular, cellular, and functional alterations upon CNS 
injury and disease [156–159], as studies have been suggest-
ing the existence of two main astrocytic phenotypes, namely 
A1 (described as the “harmful” ones) and the A2 (the pro-
tective ones) (Fig. 2). Having this in mind, it seems that the 
A1 phenotype only appears through microglia activation, 
gaining a neurotoxic function, and rapidly inducing neuronal 
death [55]. In contrast, other authors have shown that block-
ing the microglial mediated conversion of astrocytes to an 
A1 neurotoxic phenotype through glucagon-like peptide-1 
receptor agonists, leads to protection against the loss of DA 
and behavioral deficits in an α-syn PD mouse model [160]. 
Even though, to better dissect the role of glial cells in PD, 
Kuter et al. [161] induced astrocytic dysfunction by chronic 
infusion of fluorocitrate (FC) into the SNpc of a 6-OHDA 
PD model. From such a study, they described that prolonged 
astrocyte dysfunction and death, as well as microglia activa-
tion, stressed DA neurons but did not massively degener-
ate them. Probably these effects were found due to the low 
concentration of FC used (2 nmol/24 h for 7 days) [161]. 
However, when combined with 6-OHDA toxin, a rever-
sal effect was observed, with an accelerated DA neuronal 
degeneration being disclosed. Nevertheless, this study does 
not provide mechanistic insights on how astrocytes become 
dysfunctional, whereby further studies are needed to fulfill 
the role of astrocytes function on PD and in DA system and 
functionality, as well as how they interplay with microglial 
cells.

Oxidative stress

Oxidative stress is thought to play an important role in 
DA neurotoxicity, resulting from an imbalance of ROS 
production and cellular antioxidant activity [162, 163]. 
Nevertheless, a well-known endogenous cellular mecha-
nism of defence against oxidative stress is the binding of 
the transcription factor NF-E2-related factor (Nrf2) to the 
antioxidant response element (ARE), which leads to anti-
oxidant effects, phase II detoxification enzymes and neuro-
protective effects [164]. Indeed, it was already shown that 
overexpression of Nrf2 in astrocytes protects mice from 
mutant α-syn [165], and Nrf2-overexpressing astrocytes 
transplantation into the mouse striatum protects it against 
6-OHDA toxicity [166, 167]. Yet, in addition to the seg-
regation of important trophic and neurotrophic molecules, 
astrocytes are also able to express enzymes with DA roles, 
as it is the case of MAO-B [168]. MAO-B is a monoamine 

metabolic enzyme that oxidizes the neurotransmitter dopa-
mine and other amines [169, 170], and hydrogen peroxide 
 (H2O2) is one of the products released during such oxidation. 
Astrocytes are protected against these oxidative species due 
to their high content in GSH and glutathione peroxidase, 
which can detoxify  H2O2 within the cells [171]. However, 
 H2O2 has a high membrane permeability, and therefore, it 
can induce toxic effects not only within the cell of origin but 
also in neighboring cells [168]. In fact, in the post-mortem 
brains of PD patients, it was found high levels of MAO-B 
in astrocytes surrounding the SNpc [172]. In light of this, 
studies have been performed and proved that the inhibition 
of MAO-B prolongs the half-life of DA neurons, extending 
their neurotransmission effect and consequently relieving 
associated motor symptoms [173].

Like astrocytes, microglia also plays a pivotal role in the 
pathology of PD by oxidative stress. Microglia activation 
through LPS leads to activation of the ERK signaling path-
way and, consequently, to NADPH oxidase activation [174]. 
NADPH oxidase is expressed on microglia and is the main 
ROS producing enzyme during inflammation [175]. Addi-
tionally, using an MPTP model, mutant mice defective in 
NADPH-oxidase have less SNpc DA loss when comparing 
to their littermates [175].

PD‑related genes expressed in Glial cells

Several studies have determined that genes known to have 
a causative role in the development of PD are expressed 
in glial cells and have important roles in glial function. 
Below, we will address some of these genes and their impact 
on glial cell function.

Park2

This gene encodes ubiquitin ligase (E3)—the Parkin pro-
tein—that mediates the link of ubiquitin to its substrate 
[176], and is also involved in a genetic recessive form of PD 
[177, 178]. Besides DA neurons, Parkin also plays an impor-
tant role in astrocyte proliferation. Of note, using cultures of 
mice Park2-KO, astrocytes seem to have a decreased prolif-
eration rate [179, 180]. Moreover, the absence of Park2 was 
also found to affect astrocytes neurotrophic and antioxidant 
capabilities (Fig. 3), leading, for instance, to the reduction 
of glutathione levels [179–181]. In a different study, it was 
shown that in a Park2 KO astrocytic model, the neurons 
had slower growth and a lower oxygen consumption rate. 
Nevertheless, when WT astrocytes were added to the culture 
system the phenotype was rescued [182]. Additionally, using 
toxins to induce the activation of microglia, studies have 
tried to undisclose the effects of Parkin mRNA in micro-
glial function. For instance, LPS exposure in microglial cul-
tures leads to a decrease of parkin by over-activating c-Jun 
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N-terminal Kinase (JNK) and NF-kB pathways (Fig. 3) [183, 
184], thereby suggesting that reductions in parkin levels may 
contribute to the development of PD by increasing the vul-
nerability of the nigrostriatal pathway.

Park7

Several studies have determined that genes known to have 
a causative role in the development of PD are expressed 
in glial cells and have important roles in glial function. For 
e.g., DJ-1 (encoded by Park7), which is a chaperone that 
suppresses α-syn fibrillation [185], mediates neuroprotection 
through an astrocyte-dependent mechanism involving extra-
cellular-secreted soluble factors (anti-oxidant molecules, 
bioenergetic molecules, cytokines, and peptide neurotrophic 
factors) [186–188]. To prove the importance of this protein 
in neuroprotection, Lev et al. did a KO of Park7 in astrocytes, 
which resulted in a decrease in astrocytes’ capacity to protect 

DA neurons both in rotenone and 6-OHDA neurotoxin PD 
models (Fig. 3) [189, 190]. In a similar study, demonstrating 
that DJ-1 exerts anti-inflammatory actions in astrocytes and 
microglia, Kim et al. [191] demonstrated that DJ-1 facilitates 
the interactions between Src-homology 2-domain containing 
protein tyrosine phosphate-1 (SHP-1) and specific signal-
transducers and activators of transcription (STAT), such as 
STAT1—important signaling molecules in the modulation 
of brain inflammation. This protein is also involved in the 
regulation of lipid raft-dependent endocytosis in astrocytes 
(Fig. 3) [192, 193], supporting the organization and interac-
tion of proteins involved in several functions, like recep-
tor trafficking and signal transduction [192, 194]. In PD 
models, it is already known that this composition is altered 
[195]. Previous reports have shown that lipid rafts associated 
with several PD-associated proteins, including DJ-1 [193], 
parkin [196], PINK1 (PTEN-induced kinase 1) [197] and 
α-syn [198], can protect neurons against oxidative stress 

Fig. 3  PD-related genes expressed in glial cells. Astrocytes (a) can 
uptake α-syn (c) and, initially, this process is viewed as a protective 
mechanism. However, reaching a certain threshold, this capability 
becomes toxic to these cells leading to its malfunction. Also, α-syn 

can bind to microglial cells (b) through surface receptors and lead to 
the activation of inflammatory pathways. The dysregulation/depletion 
of genes, such as Park 2 and Park 7 in astrocytes (d) is also connected 
to astrocytic malfunction and DA degeneration
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by overexpressing human DJ-1 protein in astrocytes. It was 
already demonstrated that after rotenone exposure, there was 
a clear reduction in neuronal degeneration and microglial 
activation in PD animals’ models overexpressing DJ-1 in 
astrocytes. Also, in an α-syn accumulation and phosphoryla-
tion PD model, a remarkable decreased within DA neuronal 
degeneration was found in DJ-1 transduced animals, thereby 
indicating DJ-1 as a multiplayer in different PD conditions. 
Finally, using a transgenic zebrafish model, Frøyset et al. 
showed that DJ-1 overexpression suppressed mitochondrial 
complex I inhibition, preventing oxidative stress [199]. Still, 
DJ-1 was also found to increase the protein levels related 
to redox status, diluting NO production as well as protein 
nitrosylation, thereby indicating that DJ-1 may contribute 
to astrocytic functionality [199].

Park8

Autosomal-dominant missense mutations with the LRRK2 
(leucine-rich repeat protein kinase 2, or park8) protein are 
also involved in PD development [200]. Epidemiologi-
cally, about 1% is found in sporadic cases, while 13% are 
related to familial PD cases [201]. At cellular level LRRK2 
is expressed both in neurons and glial cells [202]. Neverthe-
less, studies have shown that LRRK2 basal levels are higher 
in cultured microglial cells when compared to neuronal cells 
[203]. Such evidence could, in that way indicate a potential 
key role of LRRK2 in microglial functions, like inflamma-
tion or phagocytosis [202, 204]. Still, and through RNA-
sequencing procedures to characterize the transcriptomic 
profiles of LRRK2 WT and KO microglial cells treated 
with α-synuclein pre-formed fibrils (PFFs), it was shown 
that LRRK2 KO microglia cells reported an attenuated mito-
chondrial impairment in response to α-synuclein PFFs [205].

Regarding its role in astrocytes, a primary culture system 
has shown that LRRK2 regulates lysosome size, number, 
and function by diminishing the lysosomal capacity [206]. 
Moreover, a recent study characterizing LRRK2 effects on 
astrocytes (using midbrain-patterned astrocytes from human 
induced pluripotent stem cells (iPSCs) derived from PD 
LRRK2 patients) has shown that transforming growth factor-
beta 1 (TGFB1, responsible to reduce microglial inflamma-
tory response [207]) and matrix metallopeptidase 2 (MMP2, 
which is known to degrade α-synuclein aggregates [208]) 
were down-regulated in LRRK2 astrocytes. Thus, although 
LRRK2 appears to impact astrocytic (glial) function [209], 
important studies fully addressing the impact of LRRK-2 
on it and in PD development and progression are missing.

SNCA

One evident hallmark of PD is the formation of cellular 
inclusions in the brain, commonly called Lewy bodies and 

Lewy neuritis [210, 211]. These are mainly composed of 
α-syn (SNCA gene) [211], a protein that aggregates into 
insoluble fibrils via the formation of soluble intermediates. 
Depositions of α-syn are mainly found in PD DA neurons, 
but also astrocytes [212]. Studies have been postulating that 
α-syn can spread from neurons to glial cells via the extra-
cellular space or direct cell-to-cell transfer (Fig. 3) [213, 
214]. Astrocytes can rapidly and extensively uptake α-syn 
oligomers from the extracellular space [213]. Although the 
neuropathophysiology of α-syn in PD initiation and pro-
gression is still not well understood, studies have indicated 
that in initial phases, the α-syn uptake may be neuroprotec-
tive, thereby preventing disease progression. Simplistically, 
there may exist a threshold that further affects mitochon-
drial integrity in astrocytes and then leads to neurotoxicity 
[215]. It was revealed that α-syn accumulation in astrocytes 
leads to increased levels of expression of cytokines and 
chemokines,  Ca2+ flux, and oxidative stress (Fig. 3) [216, 
217]. This ultimately culminates in compromised astrocytic 
function, such as glutamate uptake and blood–brain barrier 
integrity [56]. Consequently, microglial cells are activated 
in the midbrain, where a significant loss of DA neurons is 
observed [56, 218].

Conversely, soluble α-syn binds with microglia cell sur-
face receptor(TLR2, TLR4, and CD11b) increases oxidative 
stress leading to the activation of inflammatory pathways, 
nuclear factor kappa-B (Fig. 3) (NF-kB) [198, 199]. This 
will lead to the activation of astrocytes and consequently to 
the upregulation of inflammatory molecules, such as nitric 
oxide (NO) responsible for creating α-syn aggregates [221, 
222]. Recently, Olsen and Feany demonstrated that using 
Drosophila expressing human α-synuclein in glia culminates 
in α-synuclein aggregation, death of dopaminergic neurons, 
impaired locomotor function, and autonomic dysfunction 
[223], thereby indicating that glial cells may be key players 
in PD.

GBA

Glucosylceramidase beta is encoded by the GBA gene. 
Mutations in this gene increase the risk of developing PD, 
since it leads to increased accumulation of pathological 
LBs and remarkable cognitive changes than those without 
GBA mutations [224]. Physiologically, GBA is expressed 
both in neurons [225] and glial cells [226]. Curiously, astro-
cytes were found to have higher GBA activity rather than 
microglial cells [226]. Indeed, GBA expression is relatively 
enriched in astrocytes and based on the study that was con-
ducted by Sanyal et al. knocking-down GBA in astrocytes 
led to broad deficits in lysosomal morphology and function, 
causing inflammatory responses and increasing neurologic 
damage [227]. Also, studies using GBA-KO astrocytes 
showed that these astrocytes present reduced LC3-positive 
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puncta, thereby indicating that GBA plays an important role 
in autophagy [228].

New PD therapies targeting glial cells

Current treatments for PD only ameliorate motor symptoms 
and do not delay or treat the disease, whereby the main 
challenge remains: the development of a neuroprotective or 
disease-modifying strategy for PD. Therefore, targeting both 
neurons and/or glial cells may offer opportune windows for 
the establishment of new PD treatments.

Currently, different therapies targeting astrocytes are 
being developed based on astrocyte transplantation and/or 
in the pharmacological correction of astrocytic dysfunction. 
Regarding the first view, disease-relevant human astrocytes 
can be acquired from primary sources or the differentiation 
of ESCs or iPSCs [229, 230]. In fact, over the last years, 
different protocols have been developed to generated fea-
sible ESC- and iPSC-derived astrocytes [231, 232]. After 
the differentiation of stem cells into astrocytes, they can be 
transplanted to replace malfunctioning cells or to promote 
the survival of the existing neurons. Although, there is a 
general lacking of studies using these approaches, recent 
pieces of evidence demonstrated that astrocytes can be 
derived from stem cells in the context of PD [209, 233]. Of 
note, in the works of di Domenico et al. and Booth et al. it 
was indicated that astrocytes could be contributors during 
PD pathogenesis, which open new paths to explore not only 
new mechanisms to understand PD pathophysiology but also 
to explore novel therapeutic strategies and targets to tackle 
PD [179, 233]

In addition to this, stem cell-derived astrocytes can also 
be widely used both for disease modeling and drug discov-
ery, for instance, to uncover novel compounds that can be 
protective to insults within the CNS, such as ROS [234, 
235]. An example is the use of astrocytes derived from 
hESCs to find compounds that protect against oxidative 
stress through a phenotypic assay [235]. Since oxidative 
stress is well established in the pathology of many neuro-
logical diseases, the identification of these stress-protective 
compounds could be a major help to halt or slow disease 
progression.

Concerning microglial cells, it has been hypothesized that 
targeting its activation state by suppressing their deleterious 
pro-inflammatory neurotoxicity and simultaneously enhanc-
ing their anti-inflammatory protective functions can be a 
potential approach for PD treatment [143]. For instance, sup-
pression of the microglial M1 phenotype would decrease 
the secretion of pro-inflammatory cytokines, such as TNF-
α, IL-1β, and IFN-γ [143]. Having this in mind, TNF was 
already targeted in PD animal models to overwhelm the tox-
icity associated with the M1 phenotype. Of note, a single 
injection of lentivirus-expressing dominant TNF into the rat 

SNpc alongside with 6-OHDA lesion in the striatum was 
found to attenuate DA loss and correct behavioral deficits 
in rats [144]. Overall, TNF may be a promising therapeutic 
target in PD [236]. On the other hand, targeting molecules 
involved in the activation of the anti-inflammatory M2 
microglial phenotype or able to promote the transition from 
the pro-inflammatory M1 to the M2 could also constitute 
a promising target, as shown with IL-10 and beta interfer-
ons applications [143]. Indeed, cerebral infusion of AAV-
expressing human IL-10 in an MPTP PD mouse model was 
found to promote the decrease of pro-inflammatory iNOS 
expression, enhancing the levels of anti-inflammatory medi-
ators, such as IFN-γ and transforming TGF-β while prevent-
ing the loss of striatal DA neurons [143, 237, 238].

Histone deacetylase (HDAC) has also been looked like 
a promising therapeutic target for PD, given its role in the 
modulation of glial cells and α-syn aggregation effects [239, 
240]. Indeed, the use of HDAC inhibitors is being presented 
as a potential treatment of PD, as studies previously shown 
that using HDAC inhibitors reduce inflammation by pre-
venting the release of pro-inflammatory cytokines from 
microglia [240, 241]. In line with this, cannabinoid type-2 
receptors (CB2) are also being considered a PD therapeutical 
target, since they are commonly found on activated micro-
glia on PD [242]. Pharmacological activation of microglia 
CB2 receptors led to a reduction in microglial activation, 
enhancing the functional motor deficits of an MPTP mouse 
model of PD [242, 243].

Finally, and as beforementioned, glial cell transplantation 
has recently emerged as a promising tool for CNS regen-
erative approaches [244]. However, cell transplantation 
procedures remain under discussion, and other alternative 
approaches have been suggested and explored, as the use 
of the secretome of glial cells [189]. Glial cells secretome 
was already profiled and it has been suggested as a novel 
approach for the treatment of CNS disorders, including PD 
[34, 244, 245]. Actually, and if we think from the clinical 
point of view, glial secretome could be a strong tool not only 
to be used as a therapeutical strategy but also as a reliable 
source for diagnosis and prognosis biomarkers and to the 
identification of therapeutical targets [246–248]. Neverthe-
less, the potential application of glial cells secretome as a 
potential tool for CNS regeneration was already demon-
strated by Jeon et al. [249], which found glial cells secretome 
as a modulator of the phagocytic function of microglia due 
to the presence of the acute phase protein pentraxin (PTX3) 
in its composition. Thus, although the intrinsic potential of 
glial cells secretome appears to be promising, studies regard-
ing its functional impact and its interplay under normal and 
pathological conditions remain unexplored [245], whereby 
studies should be performed in the future to explore their 
role in the pathophysiology of PD, as important gains can be 
obtained with potential implication to the clinics. In addition 
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to this, although several models are being used to study PD, 
it becomes important to develop and have new models that 
could resemble as much as possible PD physiological condi-
tions as it occurs in the human condition, like the preformed 
fibril model [250–252].

Conclusion

Although studies investigating the contribution of glial 
cells to the pathogenesis of PD are still sparse compared to 
those focusing on neurons, its involvement in the disease is 
now becoming a hot topic. However, the exact role of these 
cells on the PD pathophysiology is still controversial. Even 
though, are glial cells key players in the neurodegeneration 
of DA neurons? Or is the malfunction of glial cells a conse-
quence of DA neurons degeneration? Although such ques-
tions remain still to be answered, probably both possibilities 
might be plausible and coexist in an orchestrated way, which 
could open new avenues and insights for PD pathophysiol-
ogy understanding and future therapeutical opportunities.
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